The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics – Scientific Data

  • Stupp, R. et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. JAMA 318, 2306–2316, 12 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155(2), 462–477 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proceedings of the National Academy of Sciences 110(10), 4009–4014 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Aum, D. J. et al. Molecular and cellular heterogeneity: the hallmark of glioblastoma. Neurosurgical focus 37(6), E11 (2014).

    PubMed 

    Google Scholar 

  • Patel, A. P. et al. Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190), 1396–1401 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemée, J.-M., Clavreul, A. & Menei, P. Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone. Neuro-oncology 17(10), 1322–1332 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Clonal evolution of glioblastoma under therapy. Nature genetics 48(7), 768–776 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer cell 20(6), 810–817 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Del Vecchio, C. et al. Egfrviii gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms. Oncogene 32(21), 2670–2681 (2013).

    MathSciNet 
    PubMed 

    Google Scholar 

  • Gan, H. K., Cvrljevic, A. N. & Johns, T. G. The epidermal growth factor receptor variant iii (egfrviii): where wild things are altered, The. FEBS journal 280(21), 5350–5370 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Akbari, H. et al. Rourke, and C. Davatzikos, Pattern analysis of dynamic susceptibility contrast-enhanced mr imaging demonstrates peritumoral tissue heterogeneity. Radiology 273(2), 502–510 (2014).

    PubMed 

    Google Scholar 

  • Thorne, A. H., Orellana, L., Parisian, A., Cavenee, W. & Furnari, F. Mutational heterogeneity of the egfr extracellular domain promotes an oncogenic untethered transitional conformation and the potential for greater therapeutic targeting in gbm patients, in Neuro-Oncology, 18, 45–45, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2016.

  • Zanca, C. & Furnari, F. Tumor heterogeneity contributes to resistance to anti-egfr therapy in glioblastoma, in Neuro-Oncology, 18, 52–52, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2016.

  • Bakas, S. et al. In vivo detection of egfrviii in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the φ-index. Clinical Cancer Research 23(16), 4724–4734 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakas, S. et al. Segmentation labels and radiomic features for the pre-operative scans of the tcga-gbm collection, 07 2017.

  • Bakas, S. et al. Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features, Nature Scientific. Data 4, 170117 (2017).

    Google Scholar 

  • Menze, B. H. et al. Leemput, The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging 34(10), 1993–2024 (2015).

    PubMed 

    Google Scholar 

  • Bakas, S. et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, CoRR, abs/1811.02629, 2018.

  • Kinahan, P., Muzi, M., Bialecki, B. & Coombs, L. Data from acrin-fmiso-brain, The Cancer Imaging Archive, 2018.

  • Gerstner, E. R. et al. Acrin 6684: Assessment of tumor hypoxia in newly diagnosed glioblastoma using 18f-fmiso pet and mri. Clinical Cancer Research 22(20), 5079–5086 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ratai, E.-M. et al. Acrin 6684: Multicenter, phase ii assessment of tumor hypoxia in newly diagnosed glioblastoma using magnetic resonance spectroscopy. PLOS ONE 13, 1–14, 06 (2018).

    Google Scholar 

  • Shah, N., Feng, X., Lankerovich, M., Puchalski, R. B. & Keogh, B. Data from ivy gap, The Cancer Imaging Archive, 2016.

  • Puchalski, R. B. et al. An anatomic transcriptional atlas of human glioblastoma. Science 360(6389), 660–663 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kinahan, P., Muzi, M., Bialecki, B., Herman, B. & Coombs, L. Data from acrin-dsc-mr-brain, The Cancer Imaging Archive, 2019.

  • Boxerman, J. L. et al. Early post-bevacizumab progression on contrast-enhanced MRI as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 Central Reader Study. Neuro-Oncology 15, 945–954, 07 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mamonov, A. B. & Kalpathy-Cramer, J. Data from qin gbm treatment response, The Cancer Imaging Archive, 2016.

  • Prah, M. et al. Repeatability of standardized and normalized relative cbv in patients with newly diagnosed glioblastoma. American Journal of Neuroradiology 36(9), 1654–1661 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jafari-Khouzani, K. et al. Repeatability of cerebral perfusion using dynamic susceptibility contrast mri in glioblastoma patients. Translational Oncology 8(3), 137–146 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • N. C. I. C. P. T. A. C. (CPTAC), Radiology data from the clinical proteomic tumor analysis consortium glioblastoma multiforme [cptac-gbm] collection, The Cancer Imaging Archive, 2018.

  • Jansen, S. & Van, T. Dyke, Tcia mouse-astrocytoma collection, The Cancer Imaging Archive, 2015.

  • Clark, K. et al. The cancer imaging archive (tcia): Maintaining and operating a public information repository. Journal of Digital Imaging 26, 1045–1057 (2013). Dec.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nasrallah, M. P. et al. Molecular neuropathology in practice: clinical profiling and integrative analysis of molecular alterations in glioblastoma. Academic pathology 6, 2374289519848353 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakas, S. et al. Segmentation labels and radiomic features for the pre-operative scans of the tcga-lgg collection, 07 2017.

  • Zwanenburg, A. et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2), 328–338 (2020).

    PubMed 

    Google Scholar 

  • Davatzikos, C. et al. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. Journal of medical imaging 5(1), 011018 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prasanna, P., Tiwari, P. & Madabhushi, A. Co-occurrence of local anisotropic gradient orientations (collage): a new radiomics descriptor. Scientific reports 6, 37241 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakas, S. et al. The UPenn-GBM data collection: Multi-parametric magnetic resonance imaging (mpMRI) scans for de novo Glioblastoma (GBM) patients from the Hospital of the University of Pennsylvania, The Cancer Imaging Archive, https://doi.org/10.7937/TCIA.709X-DN49 (2021).

  • Bakas, S. & Feldman, M. D. Computational staining of unlabelled tissue. Nature biomedical engineering 3(6), 425–426 (2019).

    PubMed 

    Google Scholar 

  • Akbari, H. et al. Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma. Cancer 126(11), 2625–2636 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Louis, D. N. et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta neuropathologica 131(6), 803–820 (2016).

    PubMed 

    Google Scholar 

  • Louis, D. N. et al. Announcing cimpact-now: the consortium to inform molecular and practical approaches to cns tumor taxonomy, 2017.

  • Louis, D. N. et al. cimpact-now update 1: not otherwise specified (nos) and not elsewhere classified (nec). Acta neuropathologica 135(3), 481–484 (2018).

    PubMed 

    Google Scholar 

  • Louis, D. N. et al. cimpact-now update 2: diagnostic clarifications for diffuse midline glioma, h3 k27m-mutant and diffuse astrocytoma/anaplastic astrocytoma, idh-mutant. Acta neuropathologica 135(4), 639–642 (2018).

    PubMed 

    Google Scholar 

  • Brat, D. J. et al. cimpact-now update 3: recommended diagnostic criteria for “diffuse astrocytic glioma, idh-wildtype, with molecular features of glioblastoma, who grade iv”. Acta neuropathologica 136(5), 805–810 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellison, D. W. et al. cimpact-now update 4: diffuse gliomas characterized by myb, mybl1, or fgfr1 alterations or braf v600e mutation. Acta neuropathologica 137(4), 683–687 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Brat, D. J. et al. cimpact-now update 5: recommended grading criteria and terminologies for idh-mutant astrocytomas. Acta neuropathologica 139(3), 603–608 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Louis, D. N. et al. cimpact-now update 6: new entity and diagnostic principle recommendations of the cimpact-utrecht meeting on future cns tumor classification and grading, 2020.

  • Ellison, D. W. et al. cimpact-now update 7: Advancing the molecular classification of ependymal tumors. Brain Pathology 30(5), 863–866 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, R. et al. A (sort of) new image data format standard: Nifti-1: We 150, Neuroimage, 22 2004.

  • Baid, U. et al. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification, arXiv preprint arXiv:2107.02314, 2021.

  • Rohlfing, T., Zahr, N. M., Sullivan, E. V. & Pfefferbaum, A. The sri24 multichannel atlas of normal adult human brain structure. Human brain mapping, 31(5), 798–819 (2010).

    Google Scholar 

  • Yushkevich, P. A. et al. Fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 tesla and 7 tesla t2-weighted mri. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 12(7), P126–P127 (2016).

    Google Scholar 

  • Joshi, S., Davis, B., Jomier, M. & Gerig, G. Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004).

    PubMed 

    Google Scholar 

  • Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE transactions on medical imaging 17(1), 87–97 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Tustison, N. J. et al. N4itk: improved n3 bias correction. IEEE transactions on medical imaging 29(6), 1310–1320 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Larsen, C. T., Iglesias, J. E. & Van, K. Leemput, N3 bias field correction explained as a bayesian modeling method, in Bayesian and graphical models for biomedical imaging, 1–12, Springer, 2014.

  • Bischoff-Grethe, A. et al. A technique for the deidentification of structural brain mr images. Human brain mapping 28(9), 892–903 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thakur, S. et al. Brain extraction on mri scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training. NeuroImage 220, 117081 (2020).

    PubMed 

    Google Scholar 

  • Rathore, S. et al. Brain cancer imaging phenomics toolkit (brain-captk): an interactive platform for quantitative analysis of glioblastoma, in International MICCAI Brainlesion Workshop, 133–145, Springer, 2017.

  • Pati, S. et al. The cancer imaging phenomics toolkit (captk): Technical overview, in International MICCAI Brainlesion Workshop, 380–394, Springer, 2019.

  • Kamnitsas, K. et al. Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Medical image analysis 36, 61–78 (2017).

    PubMed 

    Google Scholar 

  • McKinley, R. et al. Uncertainty-driven refinement of tumor-core segmentation using 3d-to-2d networks with label uncertainty, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (A. Crimi and S. Bakas, eds.), (Cham), 401–411, Springer International Publishing, 2021.

  • Isensee, F., Jäger, P. F., Full, P. M., Vollmuth, P. & Maier-Hein, K. H. nnu-net for brain tumor segmentation, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (A. Crimi and S. Bakas, eds.), (Cham), 118–132, Springer International Publishing, 2021.

  • Warfield, S. K., Zou, K. H. & Wells, W. M. Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE transactions on medical imaging 23(7), 903–921 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Soares, J., Marques, P., Alves, V. & Sousa, N. A hitchhiker’s guide to diffusion tensor imaging. Frontiers in neuroscience 7, 31 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paulson, E. S. & Schmainda, K. M. Comparison of dynamic susceptibility-weighted contrast-enhanced mr methods: Recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249(2), 601–613 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cha, S. et al. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion mr imaging. American Journal of Neuroradiology 28(6), 1078–1084 (2007).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akbari, H. et al. Rourke, and C. Davatzikos, In vivo evaluation of egfrviii mutation in primary glioblastoma patients via complex multiparametric mri signature. Neuro-oncology 20(8), 1068–1079 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakas, S. et al. Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (mri): advanced radiomic features may compensate for lack of advanced mri modalities. Journal of Medical Imaging 7(3), 031505 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mang, A., Bakas, S., Subramanian, S., Davatzikos, C. & Biros, G. Integrated biophysical modeling and image analysis: Application to neuro-oncology. Annual Review of Biomedical Engineering 22, 309–341 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaffe, C. C. Imaging and genomics: is there a synergy? 2012.

  • Rutman, A. M. & Kuo, M. D. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. European journal of radiology 70(2), 232–241 (2009).

    PubMed 

    Google Scholar 

  • Mazurowski, M. A. Radiogenomics: what it is and why it is important. Journal of the American College of Radiology 12(8), 862–866 (2015).

    PubMed 

    Google Scholar 

  • Zinn, P. O. et al. Radiogenomic mapping of edema/cellular invasion mri-phenotypes in glioblastoma multiforme. PloS one 6(10), e25451 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gevaert, O. et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273(1), 168–174 (2014).

    PubMed 

    Google Scholar 

  • Jain, R. et al. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272(2), 484–493 (2014).

    PubMed 

    Google Scholar 

  • Itakura, H. et al. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Science translational medicine 7(303), 303ra138–303ra138 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Elsheikh, S. S. et al. Multi-stage association analysis of glioblastoma gene expressions with texture and spatial patterns, in International MICCAI Brainlesion Workshop, 239–250, Springer, 2018.

  • Ellingson, B. et al. Probabilistic radiographic atlas of glioblastoma phenotypes. American Journal of neuroradiology 34(3), 533–540 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakas, S. et al. Highly-expressed wild-type EGFR and EGFRvIII mutant glioblastomas have similar MRI signature, consitent with deep peritumoral infiltration, Neuro-Oncology, 2016.

  • Rathore, S. et al. Machine learning radiomic biomarkers non-invasively assess genetic characteristics of glioma patients. Cancer Research 79, 1392–1392 (2019).

    Google Scholar 

  • Rathore, S. et al. Rourke, and C. Davatzikos, Multivariate pattern analysis of de novo glioblastoma patients offers in vivo evaluation of o6-methylguanine-dna-methyltransferase (mgmt) promoter methylation status, compensating for insufficient specimen and assay failures. Neuro-oncology 20(Suppl 6), vi186 (2018).

    PubMed Central 

    Google Scholar 

  • Rathore, S. et al. Non-invasive determination of the o6-methylguanine-dna-methyltransferase (mgmt) promoter methylation status in glioblastoma (gbm) using magnetic resonance imaging (mri). Journal of Clinical Oncology 36, 2051–2051 (2018).

    Google Scholar 

  • Binder, Z. et al. Extracellular egfr289 activating mutations confer poorer survival and suggest enhanced motility in primary gbms, in Neuro-Oncology, 18, 105–106, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2016.

  • Bakas, S. et al. Identification of imaging signatures of the epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma. Neuro-oncology 17(suppl_5), v154–v154 (2015).

    PubMed Central 

    Google Scholar 

  • Bakas, S. et al. Nimg-40. non-invasive in vivo signature of idh1 mutational status in high grade glioma, from clinically-acquired multi-parametric magnetic resonance imaging, using multivariate machine learning. Neuro-oncology 20(suppl_6), vi184–vi185 (2018).

    PubMed Central 

    Google Scholar 

  • Binder, Z. A. et al. Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer cell 34(1), 163–177 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beig, N. et al. Radiogenomic analysis of hypoxia pathway is predictive of overall survival in glioblastoma. Scientific reports 8(1), 1–11 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Gutman, D. A. et al. Mr imaging predictors of molecular profile and survival: multi-institutional study of the tcga glioblastoma data set. Radiology 267(2), 560–569 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mazurowski, M. A., Desjardins, A. & Malof, J. M. Imaging descriptors improve the predictive power of survival models for glioblastoma patients. Neuro-oncology 15(10), 1389–1394 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakas, S. et al. Accurate and generalizable pre-operative prognostic stratification of glioblastoma patients using integrative quantitative radiomic analysis of conventional MRI. Neuro-oncology 19(Suppl 6), vi151 (2017).

    PubMed Central 

    Google Scholar 

  • Bonekamp, D. et al. Association of overall survival in patients with newly diagnosed glioblastoma with contrast-enhanced perfusion mri: Comparison of intraindividually matched t1-and t2*-based bolus techniques. Journal of Magnetic Resonance Imaging 42(1), 87–96 (2015).

    PubMed 

    Google Scholar 

  • Nicolasjilwan, M. et al. Addition of mr imaging features and genetic biomarkers strengthens glioblastoma survival prediction in tcga patients. Journal of Neuroradiology 42(4), 212–221 (2015).

    PubMed 

    Google Scholar 

  • Velazquez, E. R. et al. Fully automatic gbm segmentation in the tcga-gbm dataset: Prognosis and correlation with vasari features. Scientific reports 5(1), 1–10 (2015).

    Google Scholar 

  • Akbari, H. et al. Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78(4), 572–580 (2016).

    PubMed 

    Google Scholar 

  • Rathore, S. et al. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. Journal of Medical Imaging 5(2), 021219 (2018).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macyszyn, L. et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-oncology 18(3), 417–425 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rathore, S., Akbari, H., Rozycki, M., Bakas, S. & Davatzikos, C. Imaging pattern analysis reveals three distinct phenotypic subtypes of gbm with different survival rates, 2016.

  • Rathore, S. et al. Radiomic mri signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond idh1. Scientific reports 8(1), 1–12 (2018).

    CAS 

    Google Scholar 

  • Rathore, S. et al. Multivariate analysis of preoperative magnetic resonance imaging reveals transcriptomic classification of de novo glioblastoma patients. Frontiers in computational neuroscience 13, 81 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fathi Kazerooni, A., Bakas, S., Saligheh Rad, H. & Davatzikos, C. Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review. Journal of Magnetic Resonance Imaging 52(1), 54–69 (2020).

    PubMed 

    Google Scholar 

  • Davatzikos, C. et al. Precision diagnostics based on machine learning-derived imaging signatures. Magnetic resonance imaging 64, 49–61 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Colen, R. R. et al. Radiomics analysis for predicting pembrolizumab response in patients with advanced rare cancers, Journal for immunotherapy of cancer, 9(4), 2021.

  • Davatzikos, C. et al. AI-based prognostic imaging biomarkers for precision neuro-oncology: the ReSPOND consortium. Neuro-oncology 22(6), 886–888 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pei, L. et al. Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. Biomedical signal processing and control 55, 101648 (2020).

    PubMed 

    Google Scholar 

  • Bakas, S. et al. iglass: imaging integration into the glioma longitudinal analysis consortium. Neuro-oncology 22(10), 1545–1546 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pati, S. et al. Reproducibility analysis of multi-institutional paired expert annotations and radiomic features of the ivy glioblastoma atlas project (ivy gap) dataset, Medical Physics.

  • Rathore, S. et al. Multi-institutional noninvasive in vivo characterization of idh, 1p/19q, and egfrviii in glioma using neuro-cancer imaging phenomics toolkit (neuro-captk). Neuro-oncology advances 2(Supplement_4), iv22–iv34 (2020).

    PubMed 

    Google Scholar 

  • Fathi Kazerooni, A. et al. Cancer imaging phenomics via captk: multi-institutional prediction of progression-free survival and pattern of recurrence in glioblastoma. JCO clinical cancer informatics 4, 234–244 (2020).

    PubMed 

    Google Scholar 

  • Depeursinge, A. et al. Standardised convolutional filtering for radiomics, arXiv preprint arXiv:2006.05470, 2020.

  • Haralick, R. M., Shanmugam, K. & Dinstein, I. H. Textural features for image classification, IEEE Transactions on systems, man, and cybernetics, 6, pp. 610–621, 1973.

  • Thibault, G. et al. Shape and texture indexes application to cell nuclei classification, International Journal of Pattern Recognition and Artificial Intelligence, 27(0 1), p. 1357002, 2013.

  • Galloway, M. Texture analysis using gray level run lengths. Comput. Graphics Image Process 4, 172–179 (1975).

    Google Scholar 

  • Chu, A., Sehgal, C. M. & Greenleaf, J. F. Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters 11(6), 415–419 (1990).

    ADS 
    MATH 

    Google Scholar 

  • Dasarathy, B. V. & Holder, E. B. Image characterizations based on joint gray level–run length distributions. Pattern Recognition Letters 12(8), 497–502 (1991).

    ADS 

    Google Scholar 

  • Tang, X. Texture information in run-length matrices. IEEE transactions on image processing 7(11), 1602–1609 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Thibault, G. Indices de forme et de texture: de la 2D vers la 3D: application au classement de noyaux de cellules. PhD thesis, Aix-Marseille 2, 20 dministration (Sp.B., C.S., E.M., S.M.H.), 09.

  • Amadasun, M. & King, R. Textural features corresponding to textural properties. IEEE Transactions on systems, man, and Cybernetics 19(5), 1264–1274 (1989).

    Google Scholar 

  • Ojala, T., Pietikainen, M. & Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence 24(7), 971–987 (2002).

    MATH 

    Google Scholar 

  • Yushkevich, P. A. et al. User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006).

    PubMed 

    Google Scholar 

  • Yushkevich, P. A. et al. User-guided segmentation of multi-modality medical imaging datasets with itk-snap. Neuroinformatics 17(1), 83–102 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pati, S. et al. The federated tumor segmentation (fets) challenge, arXiv preprint arXiv:2105.05874, 2021.

  • Wilkinson, M. D. et al. The fair guiding principles for scientific data management and stewardship. Scientific data 3(1), 1–9 (2016).

    Google Scholar 

  • McCormick, M. M., Liu, X., Ibanez, L., Jomier, J. & Marion, C. Itk: enabling reproducible research and open science. Frontiers in neuroinformatics 8, 13 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X., Morgan, P. S., Ashburner, J., Smith, J. & Rorden, C. The first step for neuroimaging data analysis: Dicom to nifti conversion. Journal of Neuroscience Methods 264, 47–56 (2016).

    PubMed 

    Google Scholar 

  • #University #Pennsylvania #glioblastoma #UPennGBM #cohort #advanced #MRI #clinical #genomics #radiomics #Scientific #Data

    Leave a Comment

    Your email address will not be published.