Contamination analysis of Arctic ice samples as planetary field analogs and implications for future life-detection missions to Europa and Enceladus – Scientific Reports

  • Kivelson, M. et al. Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science 289, 1340–1343 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schmidt, B. E., Blankenship, D. D., Patterson, G. W. & Schenk, P. M. Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479, 502–505 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hand, K. P. et al. On the habitability and future exploration of ocean worlds. Space Sci. Rev. 216, 95 (2020).

    ADS 
    Article 

    Google Scholar 

  • Hand, K. P. et al. Science goals and mission architecture of the Europa lander mission concept. Planet. Sci. J. 3, 22 (2022).

    Article 

    Google Scholar 

  • Blanc, M. et al. Joint Europa mission (JEM): A multi-scale study of Europa to characterize its habitability and search for extant life. Planet. Space Sci. 193, 104960 (2020).

    Article 

    Google Scholar 

  • MacKenzie, S. M. et al. The Enceladus orbilander mission concept: balancing return and resources in the search for life. Planet. Sci. J. 2, 77 (2021).

    Article 

    Google Scholar 

  • Kminek, G., Conley, C., Hipkin, V. & Yano, H. COSPAR’s Planetary Protection Policy. (2017).

  • Rettberg, P. et al. Biological contamination prevention for outer solar system moons of astrobiological interest: What do we need to know?. Astrobiology 19, 951–974 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kminek, G. et al. The international planetary protection handbook. Sp. Res. Today 205, e1–e120 (2019).

    Article 

    Google Scholar 

  • Marlow, J. J., Martins, Z. & Sephton, M. A. Mars on Earth: soil analogues for future Mars missions. Astron. Geophys. 49, 2.20–2.23 (2008).

  • Martins, Z. et al. Earth as a tool for astrobiology: A European perspective. Space Sci. Rev. 209, 43–81 (2017).

    ADS 
    Article 

    Google Scholar 

  • Marlow, J. J., Martins, Z. & Sephton, M. A. Organic host analogues and the search for life on Mars. Int. J. Astrobiol. 10, 31–44 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Merino, N. et al. Living at the extremes: Extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, Y. et al. Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau. J. Glaciol. 65, 29–38 (2019).

    ADS 
    Article 

    Google Scholar 

  • Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Crawford, R. L. Microbial diversity and its relationship to planetary protection. Appl. Environ. Microbiol. 71, 4163–4168 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Onofri, S. et al. Resistance of antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud. Mycol. 61, 99 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Christner, B. C., Mikucki, J. A., Foreman, C. M., Denson, J. & Priscu, J. C. Glacial ice cores: A model system for developing extraterrestrial decontamination protocols. Icarus 174, 572–584 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Eigenbrode, J. et al. A field-based cleaning protocol for sampling devices used in life-detection studies. Astrobiology 9, 455–465 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • SCAR. SCAR’s Code of Conduct for the Exploration and Research of Subglacial Aquatic Environments Background. (2017).

  • Rogers, S. O. et al. Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl. Environ. Microbiol. 70, 2540–2544 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Michaud, A. B. et al. Environmentally clean access to Antarctic subglacial aquatic environments. Antarct. Sci. 32, 329–340 (2020).

    ADS 
    Article 

    Google Scholar 

  • Squyres, S. W., Reynolds, R. T., Cassen, P. M. & Peale, S. J. Liquid water and active resurfacing on Europa. Nature 301, 225–226 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kinasz, C. T. Desenvolvimento de metodologias para descontaminação de testemunhos de gelo para análises de ecologia microbiana e astrobiologia. PhD Thesis, Univ. Fed. St. Catarina, (2019).

  • Zhong, Z.-P. et al. Clean low-biomass procedures and their application to ancient ice core microorganisms. Front. Microbiol. 9, 1094 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Coelho, L. F. et al. Structural shifts in sea ice prokaryotic communities across a salinity gradient in the subarctic. Sci. Total Environ. 827, 154286–154300 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McCubbin, F. M. et al. Advanced curation of astromaterials for planetary science. Space Sci. Rev. 215, 48 (2019).

    ADS 
    Article 

    Google Scholar 

  • Regberg, A. et al. Microbial ecology of NASA curation clean rooms. in 43rd COSPAR Scientific Assembly. Held 28 January-4 February 43 vol. 166 PPP.3-18-18 (2018).

  • Mitchell, A. L. et al. EBI Metagenomics in 2017: Enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res. 46, D726–D735 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Olsson-Francis, K. & Cockell, C. S. Experimental methods for studying microbial survival in extraterrestrial environments. J. Microbiol. Methods 80, 1–13 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dancer, S. J., Shears, P. & Platt, D. J. Isolation and characterization of coliforms from glacial ice and water in Canada’s high Arctic. J. Appl. Microbiol. 82, 597–609 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abyzov, S. S. et al. Microflora in the basal strata at antarctic ice core above the Vostok lake. Adv. Sp. Res. 28, 701–706 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sheridan, P. P., Miteva, V. I. & Brenchley, J. E. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl. Environ. Microbiol. 69, 2153–2160 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shivaji, S. et al. Antarctic ice core samples: Culturable bacterial diversity. Res. Microbiol. 164, 70–82 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xing, T. et al. Polaromonas eurypsychrophila sp. nov., isolated from an ice core. Int. J. Syst. Evol. Microbiol. 66, 2497–2501 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shen, L. et al. Variation with depth of the abundance, diversity and pigmentation of culturable bacteria in a deep ice core from the Yuzhufeng Glacier Tibetan Plateau. Extremophiles 22, 29–38 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Sherpa, M. T., Najar, I. N., Das, S. & Thakur, N. Bacterial diversity in an alpine debris-free and debris-cover accumulation zone glacier ice, North Sikkim India. Indian J. Microbiol. 58, 470–478 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lazarevic, V., Gaïa, N., Girard, M. & Schrenzel, J. Decontamination of 16S rRNA gene amplicon sequence datasets based on bacterial load assessment by qPCR. BMC Microbiol. 16, 73 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Danko, D. C. et al. A comprehensive metagenomics framework to characterize organisms relevant for planetary protection. Microbiome 9, 82 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wood, J. M. et al. Performance of multiple metagenomics pipelines in understanding microbial diversity of a low-biomass spacecraft assembly facility. Front. Microbiol. 12, 2739 (2021).

    Google Scholar 

  • Sommerstein, R. et al. Burkholderia stabilis outbreak associated with contaminated commercially-available washing gloves, Switzerland, May 2015–August 2016. Eurosurveillance 22, 17–00213 (2017).

    PubMed Central 
    Article 

    Google Scholar 

  • Wang, L. et al. An outbreak of Burkholderia stabilis colonization in a nasal ward. Int. J. Infect. Dis. 33, 71–74 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Nishimura, Y., Ino, T. & Iizuka, H. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. Syst. Bacteriol. 38, 209–211 (1988).

    Article 

    Google Scholar 

  • McCoy, K. J. et al. Europa clipper planetary protection probabilistic risk assessment summary. Planet. Space Sci. 196, 105139 (2021).

    Article 

    Google Scholar 

  • Coustenis, A., Hedman, N. & Kminek, G. The COSPAR panel on planetary protection: recent activities. in 43rd COSPAR Scientific Assembly 43E2232C (2021).

  • Regberg, A. B. et al. Microbial ecology of the OSIRIS-REx assembly test and launch environment. in 50th Lunar and Planetary Science Conference (2019).

  • Chan, Q. H. S., Stroud, R., Martins, Z. & Yabuta, H. Concerns of organic contamination for sample return space missions. Space Sci. Rev. 216, 56 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martins, Z., Chan, Q. H. S., Bonal, L., King, A. & Yabuta, H. Organic matter in the solar system: Implications for future on-site and sample return missions. Space Sci. Rev. 216, 1–23 (2020).

    Article 
    CAS 

    Google Scholar 

  • NASA. Assessment of the Report of NASA’s Planetary Protection Independent Review Board. (National Academies Press, 2020). https://doi.org/10.17226/25773.

  • Coelho, L. F. & Martins, Z. The geochemistry of icy moons. in Encyclopedia of Geology 207–216 (Elsevier, 2021). https://doi.org/10.1016/B978-0-08-102908-4.00123-5.

  • Bell, M. S., Regberg, A., Rucker, M., Wallace, S. L. & Davis, R. Tool to assess forward contamination from the human microbiome and protect returned samples. 43rd COSPAR Sci. Assem. Held 28 January-4 Febr. 43, 166 (2021).

    Google Scholar 

  • Spry, J. A. et al. Planetary protection knowledge gaps and enabling science for human Mars missions. Bull. AAS 53, 205 (2021).

    Article 

    Google Scholar 

  • Hand, K. et al. Science of the Europa lander mission concept. Bull. AAS 53, 352 (2021).

    Google Scholar 

  • Kuhn, E. et al. Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida Antarctica. Appl. Environ. Microbiol. 80, 3687–3698 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Goordial, J. et al. In situ field sequencing and life detection in remote (79° 26′ N) Canadian High Arctic permafrost ice wedge microbial communities. Front. Microbiol. 8, 2594 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rezzonico, F. Nanopore-based instruments as biosensors for future planetary missions. Astrobiology 14, 344–351 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pascoal, F., Costa, R., Assmy, P., Duarte, P. & Magalhães, C. Exploration of the types of rarity in the Arctic ocean from the perspective of multiple methodologies. Microb. Ecol. 84, 59–72 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Miteva, V. I., Sheridan, P. P. & Brenchley, J. E. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Am. Soc. Microbiol. 70, 202–213 (2004).

    CAS 

    Google Scholar 

  • Shtarkman, Y. M. et al. Subglacial lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and Eukarya. PLoS ONE 8, e67221 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yergeau, E. et al. Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic. Sci. Rep. 7, 42242 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • D’Elia, T., Veerapaneni, R. & Rogers, S. O. Isolation of microbes from Lake Vostok accretion ice. Appl. Environ. Microbiol. 74, 4962–4965 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hatam, I. et al. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice. FEMS Microbiol. Ecol. 90, 115–125 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kayani, M. ur R. et al. Metagenomic analysis of basal ice from an Alaskan glacier. Microbiome 6, 123 (2018).

  • Itcus, C. et al. Bacterial and archaeal community structures in perennial cave ice. Sci. Rep. 8, 15671 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Neveu, M. et al. Returning samples from Enceladus for life detection. Front. Astron. Sp. Sci. 7, 26 (2020).

    ADS 
    Article 

    Google Scholar 

  • Sherwood, B. Strategic map for exploring the ocean-world Enceladus. Acta Astronaut. 126, 52–58 (2016).

    ADS 
    Article 

    Google Scholar 

  • Smith, C. L. et al. A roadmap for a European extraterrestrial sample curation facility: The EUROCARES project. Sample Return Miss. https://doi.org/10.1016/B978-0-12-818330-4.00013-6 (2021).

    Article 

    Google Scholar 

  • Legendre, L. et al. Impact of freshwater on a subarctic coastal ecosystem under seasonal sea ice (southeastern Hudson Bay, Canada) II. Production and export of microalgae. J. Mar. Syst. 7, 233–250 (1996).

    Article 

    Google Scholar 

  • Blais, M.-A., Matveev, A., Lovejoy, C. & Vincent, W. F. Size-fractionated microbiome structure in subarctic rivers and a coastal plume across DOC and salinity gradients. Front. Microbiol. 12, 4022 (2022).

    Article 

    Google Scholar 

  • Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Melosh, H. J., Ekholm, A. G., Showman, A. P. & Lorenz, R. D. The temperature of Europa’s subsurface water ocean. Icarus 168, 498–502 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Glein, C. R., Baross, J. A. & Waite, J. H. The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Karimi, E. et al. Comparative metagenomics reveals the distinctive adaptive features of the Spongia officinalis endosymbiotic consortium. Front. Microbiol. 8, 2499 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Article 

    Google Scholar 

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keller-Costa, T. et al. The gorgonian coral Eunicella labiata hosts a distinct prokaryotic consortium amenable to cultivation. FEMS Microbiol. Ecol. 93, 1–14 (2017).

    Article 
    CAS 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cole, J. R. et al. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Christner, B. C., Mosley-Thompson, E., Thompson, L. G., Zagorodnov, V. & Reeve, J. N. Isolation and Identification of Bacteria from Ancient and Modern Ice Cores. In The Patagonian Icefields (eds Casassa, G. et al.) 9–15 (Springer, 2002).

    Chapter 

    Google Scholar 

  • #Contamination #analysis #Arctic #ice #samples #planetary #field #analogs #implications #future #lifedetection #missions #Europa #Enceladus #Scientific #Reports

    Leave a Comment

    Your email address will not be published.