Kivelson, M. et al. Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science 289, 1340–1343 (2000).
Google Scholar
Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).
Google Scholar
Schmidt, B. E., Blankenship, D. D., Patterson, G. W. & Schenk, P. M. Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479, 502–505 (2011).
Google Scholar
Hand, K. P. et al. On the habitability and future exploration of ocean worlds. Space Sci. Rev. 216, 95 (2020).
Google Scholar
Hand, K. P. et al. Science goals and mission architecture of the Europa lander mission concept. Planet. Sci. J. 3, 22 (2022).
Google Scholar
Blanc, M. et al. Joint Europa mission (JEM): A multi-scale study of Europa to characterize its habitability and search for extant life. Planet. Space Sci. 193, 104960 (2020).
Google Scholar
MacKenzie, S. M. et al. The Enceladus orbilander mission concept: balancing return and resources in the search for life. Planet. Sci. J. 2, 77 (2021).
Google Scholar
Kminek, G., Conley, C., Hipkin, V. & Yano, H. COSPAR’s Planetary Protection Policy. (2017).
Rettberg, P. et al. Biological contamination prevention for outer solar system moons of astrobiological interest: What do we need to know?. Astrobiology 19, 951–974 (2019).
Google Scholar
Kminek, G. et al. The international planetary protection handbook. Sp. Res. Today 205, e1–e120 (2019).
Google Scholar
Marlow, J. J., Martins, Z. & Sephton, M. A. Mars on Earth: soil analogues for future Mars missions. Astron. Geophys. 49, 2.20–2.23 (2008).
Martins, Z. et al. Earth as a tool for astrobiology: A European perspective. Space Sci. Rev. 209, 43–81 (2017).
Google Scholar
Marlow, J. J., Martins, Z. & Sephton, M. A. Organic host analogues and the search for life on Mars. Int. J. Astrobiol. 10, 31–44 (2011).
Google Scholar
Merino, N. et al. Living at the extremes: Extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).
Google Scholar
Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).
Google Scholar
Liu, Y. et al. Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau. J. Glaciol. 65, 29–38 (2019).
Google Scholar
Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).
Google Scholar
Crawford, R. L. Microbial diversity and its relationship to planetary protection. Appl. Environ. Microbiol. 71, 4163–4168 (2005).
Google Scholar
Onofri, S. et al. Resistance of antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud. Mycol. 61, 99 (2008).
Google Scholar
Christner, B. C., Mikucki, J. A., Foreman, C. M., Denson, J. & Priscu, J. C. Glacial ice cores: A model system for developing extraterrestrial decontamination protocols. Icarus 174, 572–584 (2005).
Google Scholar
Eigenbrode, J. et al. A field-based cleaning protocol for sampling devices used in life-detection studies. Astrobiology 9, 455–465 (2009).
Google Scholar
SCAR. SCAR’s Code of Conduct for the Exploration and Research of Subglacial Aquatic Environments Background. (2017).
Rogers, S. O. et al. Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl. Environ. Microbiol. 70, 2540–2544 (2004).
Google Scholar
Michaud, A. B. et al. Environmentally clean access to Antarctic subglacial aquatic environments. Antarct. Sci. 32, 329–340 (2020).
Google Scholar
Squyres, S. W., Reynolds, R. T., Cassen, P. M. & Peale, S. J. Liquid water and active resurfacing on Europa. Nature 301, 225–226 (1983).
Google Scholar
Kinasz, C. T. Desenvolvimento de metodologias para descontaminação de testemunhos de gelo para análises de ecologia microbiana e astrobiologia. PhD Thesis, Univ. Fed. St. Catarina, (2019).
Zhong, Z.-P. et al. Clean low-biomass procedures and their application to ancient ice core microorganisms. Front. Microbiol. 9, 1094 (2018).
Google Scholar
Coelho, L. F. et al. Structural shifts in sea ice prokaryotic communities across a salinity gradient in the subarctic. Sci. Total Environ. 827, 154286–154300 (2022).
Google Scholar
McCubbin, F. M. et al. Advanced curation of astromaterials for planetary science. Space Sci. Rev. 215, 48 (2019).
Google Scholar
Regberg, A. et al. Microbial ecology of NASA curation clean rooms. in 43rd COSPAR Scientific Assembly. Held 28 January-4 February 43 vol. 166 PPP.3-18-18 (2018).
Mitchell, A. L. et al. EBI Metagenomics in 2017: Enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res. 46, D726–D735 (2018).
Google Scholar
Olsson-Francis, K. & Cockell, C. S. Experimental methods for studying microbial survival in extraterrestrial environments. J. Microbiol. Methods 80, 1–13 (2010).
Google Scholar
Dancer, S. J., Shears, P. & Platt, D. J. Isolation and characterization of coliforms from glacial ice and water in Canada’s high Arctic. J. Appl. Microbiol. 82, 597–609 (1997).
Google Scholar
Abyzov, S. S. et al. Microflora in the basal strata at antarctic ice core above the Vostok lake. Adv. Sp. Res. 28, 701–706 (2001).
Google Scholar
Sheridan, P. P., Miteva, V. I. & Brenchley, J. E. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl. Environ. Microbiol. 69, 2153–2160 (2003).
Google Scholar
Shivaji, S. et al. Antarctic ice core samples: Culturable bacterial diversity. Res. Microbiol. 164, 70–82 (2013).
Google Scholar
Xing, T. et al. Polaromonas eurypsychrophila sp. nov., isolated from an ice core. Int. J. Syst. Evol. Microbiol. 66, 2497–2501 (2016).
Google Scholar
Shen, L. et al. Variation with depth of the abundance, diversity and pigmentation of culturable bacteria in a deep ice core from the Yuzhufeng Glacier Tibetan Plateau. Extremophiles 22, 29–38 (2018).
Google Scholar
Sherpa, M. T., Najar, I. N., Das, S. & Thakur, N. Bacterial diversity in an alpine debris-free and debris-cover accumulation zone glacier ice, North Sikkim India. Indian J. Microbiol. 58, 470–478 (2018).
Google Scholar
Lazarevic, V., Gaïa, N., Girard, M. & Schrenzel, J. Decontamination of 16S rRNA gene amplicon sequence datasets based on bacterial load assessment by qPCR. BMC Microbiol. 16, 73 (2016).
Google Scholar
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
Google Scholar
Danko, D. C. et al. A comprehensive metagenomics framework to characterize organisms relevant for planetary protection. Microbiome 9, 82 (2021).
Google Scholar
Wood, J. M. et al. Performance of multiple metagenomics pipelines in understanding microbial diversity of a low-biomass spacecraft assembly facility. Front. Microbiol. 12, 2739 (2021).
Sommerstein, R. et al. Burkholderia stabilis outbreak associated with contaminated commercially-available washing gloves, Switzerland, May 2015–August 2016. Eurosurveillance 22, 17–00213 (2017).
Google Scholar
Wang, L. et al. An outbreak of Burkholderia stabilis colonization in a nasal ward. Int. J. Infect. Dis. 33, 71–74 (2015).
Google Scholar
Nishimura, Y., Ino, T. & Iizuka, H. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. Syst. Bacteriol. 38, 209–211 (1988).
Google Scholar
McCoy, K. J. et al. Europa clipper planetary protection probabilistic risk assessment summary. Planet. Space Sci. 196, 105139 (2021).
Google Scholar
Coustenis, A., Hedman, N. & Kminek, G. The COSPAR panel on planetary protection: recent activities. in 43rd COSPAR Scientific Assembly 43E2232C (2021).
Regberg, A. B. et al. Microbial ecology of the OSIRIS-REx assembly test and launch environment. in 50th Lunar and Planetary Science Conference (2019).
Chan, Q. H. S., Stroud, R., Martins, Z. & Yabuta, H. Concerns of organic contamination for sample return space missions. Space Sci. Rev. 216, 56 (2020).
Google Scholar
Martins, Z., Chan, Q. H. S., Bonal, L., King, A. & Yabuta, H. Organic matter in the solar system: Implications for future on-site and sample return missions. Space Sci. Rev. 216, 1–23 (2020).
Google Scholar
NASA. Assessment of the Report of NASA’s Planetary Protection Independent Review Board. (National Academies Press, 2020). https://doi.org/10.17226/25773.
Coelho, L. F. & Martins, Z. The geochemistry of icy moons. in Encyclopedia of Geology 207–216 (Elsevier, 2021). https://doi.org/10.1016/B978-0-08-102908-4.00123-5.
Bell, M. S., Regberg, A., Rucker, M., Wallace, S. L. & Davis, R. Tool to assess forward contamination from the human microbiome and protect returned samples. 43rd COSPAR Sci. Assem. Held 28 January-4 Febr. 43, 166 (2021).
Spry, J. A. et al. Planetary protection knowledge gaps and enabling science for human Mars missions. Bull. AAS 53, 205 (2021).
Google Scholar
Hand, K. et al. Science of the Europa lander mission concept. Bull. AAS 53, 352 (2021).
Kuhn, E. et al. Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida Antarctica. Appl. Environ. Microbiol. 80, 3687–3698 (2014).
Google Scholar
Goordial, J. et al. In situ field sequencing and life detection in remote (79° 26′ N) Canadian High Arctic permafrost ice wedge microbial communities. Front. Microbiol. 8, 2594 (2017).
Google Scholar
Rezzonico, F. Nanopore-based instruments as biosensors for future planetary missions. Astrobiology 14, 344–351 (2014).
Google Scholar
Pascoal, F., Costa, R., Assmy, P., Duarte, P. & Magalhães, C. Exploration of the types of rarity in the Arctic ocean from the perspective of multiple methodologies. Microb. Ecol. 84, 59–72 (2021).
Google Scholar
Miteva, V. I., Sheridan, P. P. & Brenchley, J. E. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Am. Soc. Microbiol. 70, 202–213 (2004).
Google Scholar
Shtarkman, Y. M. et al. Subglacial lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and Eukarya. PLoS ONE 8, e67221 (2013).
Google Scholar
Yergeau, E. et al. Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic. Sci. Rep. 7, 42242 (2017).
Google Scholar
D’Elia, T., Veerapaneni, R. & Rogers, S. O. Isolation of microbes from Lake Vostok accretion ice. Appl. Environ. Microbiol. 74, 4962–4965 (2008).
Google Scholar
Hatam, I. et al. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice. FEMS Microbiol. Ecol. 90, 115–125 (2014).
Google Scholar
Kayani, M. ur R. et al. Metagenomic analysis of basal ice from an Alaskan glacier. Microbiome 6, 123 (2018).
Itcus, C. et al. Bacterial and archaeal community structures in perennial cave ice. Sci. Rep. 8, 15671 (2018).
Google Scholar
Neveu, M. et al. Returning samples from Enceladus for life detection. Front. Astron. Sp. Sci. 7, 26 (2020).
Google Scholar
Sherwood, B. Strategic map for exploring the ocean-world Enceladus. Acta Astronaut. 126, 52–58 (2016).
Google Scholar
Smith, C. L. et al. A roadmap for a European extraterrestrial sample curation facility: The EUROCARES project. Sample Return Miss. https://doi.org/10.1016/B978-0-12-818330-4.00013-6 (2021).
Google Scholar
Legendre, L. et al. Impact of freshwater on a subarctic coastal ecosystem under seasonal sea ice (southeastern Hudson Bay, Canada) II. Production and export of microalgae. J. Mar. Syst. 7, 233–250 (1996).
Google Scholar
Blais, M.-A., Matveev, A., Lovejoy, C. & Vincent, W. F. Size-fractionated microbiome structure in subarctic rivers and a coastal plume across DOC and salinity gradients. Front. Microbiol. 12, 4022 (2022).
Google Scholar
Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).
Google Scholar
Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).
Google Scholar
Melosh, H. J., Ekholm, A. G., Showman, A. P. & Lorenz, R. D. The temperature of Europa’s subsurface water ocean. Icarus 168, 498–502 (2004).
Google Scholar
Glein, C. R., Baross, J. A. & Waite, J. H. The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015).
Google Scholar
Karimi, E. et al. Comparative metagenomics reveals the distinctive adaptive features of the Spongia officinalis endosymbiotic consortium. Front. Microbiol. 8, 2499 (2017).
Google Scholar
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
Google Scholar
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
Google Scholar
Keller-Costa, T. et al. The gorgonian coral Eunicella labiata hosts a distinct prokaryotic consortium amenable to cultivation. FEMS Microbiol. Ecol. 93, 1–14 (2017).
Google Scholar
McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).
Google Scholar
Cole, J. R. et al. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
Google Scholar
Christner, B. C., Mosley-Thompson, E., Thompson, L. G., Zagorodnov, V. & Reeve, J. N. Isolation and Identification of Bacteria from Ancient and Modern Ice Cores. In The Patagonian Icefields (eds Casassa, G. et al.) 9–15 (Springer, 2002).
Google Scholar
#Contamination #analysis #Arctic #ice #samples #planetary #field #analogs #implications #future #lifedetection #missions #Europa #Enceladus #Scientific #Reports